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Аннотация: Чизиқли регрессия 

ижтимоий фанларда кенг 

қўлланиладиган статистик 

усуллардан биридир. Регрессияларнинг 

асосий қисми коеффициентлар бўлиб, 

улар баъзи хулосалар келтиради. 

Шунга қарамай, биз гипотеза 

синовига ёки ишонч оралиқларига ва 

чизиқли моделлар асосидаги маълум 

тахминларга таянамиз, масалан, 

намуна ҳажми етарлича катта. Ушбу 

тадқиқотда биз бооцтрап ёрдамида 

ишонч оралиқларини яратишнинг 

муқобил усулини таклиф қиламиз, бу 

ҳатто намуна ҳажми ОЛС 

тахминлари бўйича талаб 

қилинганидан кичикроқ бўлса ҳам яхши 

ишлаши кутилмоқда. Биз шуни 

аниқлаймизки, ҳатто кичик 

намуналарда ҳам бооцтрап ишонч 

оралиқлари каттароқ интервал 

ҳажми туфайли анъанавий  

 

 

интервалли тахминларга қараганда 

яхшироқ ишлаши мумкин. 

Abstract: Linear regression is one of 

the widely used statistical methods in 

social sciences. The core part of the 

regressions are coefficients, which bring 

some inference. Yet, we rely on 

hypothesis testing or confidence intervals 

and certain assumptions underlying 

linear models such as sample size being 

large enough. In this study, we suggest 

alternative way of constructing 

confidence intervals using bootstrap, 

which is expected to work well even when 

the sample size is smaller than required 

per OLS assumptions. We find that even 

in small samples, bootstrap confidence 

intervals can perform better than 

traditional interval estimations due to 

larger interval size 

Калит сўзлар: намуна ҳажми, 

чизиқли модел, ишонч оралиғи, юклаш 

чизиғи, аниқлик, интервал ўлчами 
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Introduction. Linear regression is 

quite broadly used methodology to 

explain relationships between different 

variables in many domains. Linear model 

(often referred as OLS model) is used 

primarily for two purposes. First, this 

model can explain the relationship 

between two or more factors. Second, 

linear models are often used to make 

simple and still efficient forecasting. 

Linear models are very popular because 

they are relatively easy to learn, build and 

interpret. Yet, we almost never meet a 

perfect linear relationship between two or 

more factors in real life, thus linear 

regression is almost always an 

approximation of real life relationships. 

Linear regression, sometimes referred to 

as OLS, has a set of assumptions that 

should be met in order to make the 

outcomes of the OLS model reliable. 

These assumptions are:  

1. Homoscedasticity (or no 

heteroscedasticity) 

2. Stationarity or no autocorrelation of 

residuals (in case of time series data) 

3. No strong multicollinearity between 

explanatory variables 

4. No severe outliers 

5. Sample size to be larger than 30 

observation 

6. Linearity in relationship 

7. Normality of residuals 

Violations of one or more of the above 

assumptions can lead to inaccuracy or even 

bias in the estimation. Interested readers are 

encouraged to explore more details of each 

assumption, but in this study we will discuss 

in more detail the presence of 

heteroscedasticity, how OLS estimates can 

suffer and how bootstrap can be a remedy in 

absence of homoscedasticity. 

Material and method. Bootstrap method 

is a resampling method of a given dataset to 

build a sampling distribution of a specific 

statistic. Bootstrapping has become popular 

because it has proven to provide reliable 

inferences in many cases even when 

underlying assumptions are not satisfied. This 

also applied to cases of heteroscedastic 

residuals which is first discussed in papers of 

Efron (1979). Since then, theoretical 

foundations have been concentrated on 

justifying validity and efficiency of bootstrap 

confidence intervals with non-constant 

variance of errors (Davison and Hinkley, 

1997).      

 In the context of linear models, there 

have been primarily two types of 

bootstrapping used for estimating point and 

interval estimates, bootstrapping residuals and 

bootstrapping pairs (Chernick and LaBudde, 

2011).  

Bootstrapping residuals: This method of 

bootstrapping was first introduced by Efron 

(1982). Imagine we have the following model  

𝑌𝑖 = 𝑔𝑖(𝛽) +  𝑒𝑖,    for    i=1,2,….,n 

where 𝑔𝑖(𝛽) is a function with a known 

form. To estimate 𝛽, we minimize distance 

between our true dependent variable  𝑌𝑖 and 

estimated function 𝑔𝑖(𝛽). These distances are 

expressed in terms of residuals  𝑒�̂� =   𝑌𝑖 −

𝑔𝑖(�̂�). The idea behind Wild bootstrap is to 

take the distribution of residuals each having 

probability of 1/n  for  i=1,2,….,n and sample 

n times from this distribution to get bootstrap 

sample of residuals which can be denoted as 

(𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛). Afterwards, bootstrap 

dependent variable can be generated using 

𝑌𝑖
∗ = 𝑔𝑖(�̂�) +  𝑒𝑖

∗. Now, as we have our 

bootstrap dataset, we use simple OLS method 

to estimate 𝛽∗. We repeat the above procedure 

B times to get a distribution of 𝛽
𝑗
∗ estimates for 
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j=1,2,….,B. One can get standard 

deviation of 𝛽∗  to build bootstrap 

confidence intervals.  

Bootstrapping pairs:  bootstrapping pairs 

is a rather simple but powerful approach 

proposed first by Freedman (1981). Under this 

approach, we resample independent and 

dependent variables from the original sample 

which results in a bootstrap sample. We then 

use usual OLS method to estimate 𝛽∗  from 

the bootstrap sample. This procedure is 

repeated B times in order to get distribution of 

coefficients 𝛽
𝑗
∗ estimates for j=1,2,….,B. This 

distribution in turn can give bootstrap 

standard deviation. 

Efron and Tibshirani (1986) conclude 

that two approaches are equivalent when the 

model is correctly specified, but they can 

perform differently when the sample is small. 

Flachaire (2003) compared bootstrapping 

residuals and bootstrapping pairs when the 

model is correctly specified and when 

heteroscedasticity is present in the linear 

models. Flachaire (2003) concludes that when 

a proper transformation to the residual term is 

applied (wild bootstrap), residuals bootstrap 

performs better than bootstrapping pairs. 

Chernick and LaBudde (2011) conclude 

however that bootstrapping vectors are less 

sensitive to violations of model assumptions 

and can still perform well if those assumptions 

are not met. This can be explained by the fact 

that the vector method does not depend on 

model structure while bootstrapping residuals 

do. 

Other approaches are stationary bootstrap 

(Politis and Roman, 1994), and the percentile-

t bootstrap (Diciccio and Efron, 1992) each 

used under different scenarios of non-constant 

variance of the residuals.  

This study tries to shed further light into 

implementing bootstrapping pair in the 

context of linear models with heteroscedastic 

residuals and test bootstrap interval 

performance under different sample sizes.  

Linear regression. First of all, let’s look 

into how linear models are built and how 

coefficients as well as their intervals are 

estimated. As mentioned earlier, the linear 

model evaluates the impact of one or more 

variables (explanatory variables) to another 

variable (explained or dependent variable). 

This is done by estimating coefficients of 

estimates of each explanatory variable. For 

instance, imagine that we want to evaluate 

whether your year of education affects your 

income and by how much. If we build our 

simple OLS model where income is 

dependent “Y” variable, and year of education 

is “X_1” explanatory variable, then 

coefficient of “years of educations” 

(𝛽
1

) shows the size and direction (positive or 

negative) of the impact. 

𝑌 = 𝛽0  + 𝛽1 ∗ 𝑋1 +  𝑒 

Where  

𝑌 − dependent variable,  

𝛽
0
 – intercept,   

𝛽
1

− coefficient of first explanatory 

variable 

𝑋1 − explanatory or independent variable 

𝑒 − error or residual term 

 

The above model is the simplest one 

variable example of linear regression and 

usually most studies take into account more 

explanatory variables that will improve the 

model (there are metrics to evaluate whether a 

model is improving or not, e.g. adj. R squared, 

AIC, MSE).  

Estimation of coefficients in the above 

model is done with the method of least squares 

commonly known as OLS (ordinary least 
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squares). Least squares estimate of 𝛽
1 

 is 

given by:  

�̂�
1

=  
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌) 

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋)

2  

where 

𝑛 − number of observations 

𝑋𝑖 − value of the independent variable for 

the i-th observation 

𝑌𝑖 − value of the dependent variable for 

the i-th observation 

𝑋 − mean of the independent variable 𝑋 

𝑌 − mean of the independent variable 𝑌 

Traditional confidence intervals. 

Researchers are often interested not only in 

point estimates of coefficient, but also interval 

estimations. This is because point estimates of 

coefficients are always an approximation to 

true population value. In contrast, interval 

estimations, commonly known as confidence 

intervals, have a set of advantages. Firstly, it 

gives a range of values where true population 

value can be located. Secondly, confidence 

intervals will indicate whether the true 

population parameter might be equal to 0. In 

other words, whether the effect of that specific 

explanatory/independent variable to 

dependent variable is insignificant. Currently, 

all statistical software provide both point and 

interval estimates by default. Below, we will 

look at the theoretical side of building 

confidence intervals of coefficients of linear 

models.  

Central Limit Theorem. Central Limit 

theorem (CLM) is the core concept of 

statistics that is employed also in building 

confidence intervals. The theory says that 

irrespectful of the true population dataset, if 

one derives many sample averages from many 

samples generated from the same population, 

then the distribution of sample averages is 

approximately normal (also referred as 

Gaussian, see graph below)  (Lind et al, 1967). 

The midpoint of resulting distribution of 

sample averages will be equal to the true 

population mean (see Figure 1). This is a very 

strong finding that can also be applied in 

confidence interval construction.  

 

 

 

In practice, we often cannot take many 

samples from the same population and very 

often left to work with only one sample. 

Nevertheless, one can still make some 

estimation regarding the population value 

(e.g. mean, coefficient) using the central limit 

theorem even when the distribution of the 

population dataset is not known. 

Confidence interval based on CLT. 

Consider we have only one sample from the 

population data. Firstly, we can estimate the 

sample coefficient using the method of 

ordinary least squares (discussed in previous 

chapter). Afterwards, we can estimate 

standard error of the estimated coefficient 

using the following formula also arising from 

the method of least squares.  

𝑠𝑒(�̂�1) =  
𝑠

√∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋)

2
 

where 

𝑠 − standard deviation of the residuals 

(residual standard error) 

𝑛 − number of observations 
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𝑋𝑖 − value of the independent 

variable for the i-th observation 

𝑋 − mean of the independent variable 𝑋 

 

As distribution of �̂�
1
 coefficient is 

approximately normal distribution based on 

central limit theorem, we employ properties of 

standard normal distribution (z-distribution) 

and build 90%, 95% or 99% confidence 

intervals.  

�̂�
1

± 𝑧𝛼
2

∗ 𝑠𝑒(�̂�1) 

where  

�̂�
1
- is sample coefficient estimate 

 𝑧𝛼

2
 – is a value from the standard normal 

distribution the give an area of  
𝛼

2
 

𝑠𝑒(�̂�1) - sample variance of the 

coefficient 

 

The above interval estimation is 

interpreted in the following way. 97% interval 

indicates that if we construct 100 confidence 

intervals from 100 random samples generated 

from the true population, then 97 of those 

confidence intervals will contain true 

population coefficient  𝛽1 . Also, employing 

this confidence interval you can verify 

whether population coefficient is 

insignificant. If estimated confidence interval 

contains zero, then one can suspect that the 

true population parameter can be equal to zero 

(Gujarati, 2004) 

However, one can see that estimation of 

the standard error of the same coefficient 

depends on the normality of the residual term. 

In the presence of heteroscedasticity, standard 

deviation of the error term can be inflated 

which will result in inaccuracies in confidence 

interval constructions using the CLT approach 

(Gujarati, 2004).  

Heteroscedasticity can arise from various 

sources, such as: 

1. Omitted variables 

2. Measurement error 

3. Non-linearity of the relationship of 

dependent and independent variable 

4. Outliers 

5. Residual variance that deviates with 

time 

6. Endogeneity 

7. Model misspecification 

 

If no remedy is applied to 

heteroscedasticity in residuals, it will make 

the standard error of the residuals biased and 

can lead to wrong conclusions in hypothesis 

testing. Academia suggested a set of way on 

how heteroscedasticity, such transforming 

variables, weighted least squares, including 

important variables and many others (Greene, 

2021) 

Below, we suggest another way, 

bootstrap, of handling heteroscedasticity in 

residuals for construction of our confidence 

intervals for coefficients.  

Bootstrap confidence intervals 

estimation. In the first place, it is necessary to 

explain the concept of bootstrapping. 

Bootstrap is a relatively easy resampling 

technique that can offer alternative ways of 

building confidence intervals. Bootstrap 

implies selecting one sample and generating 

many other different samples from this single 

original sample and estimating your 

parameter of interest in each newly created 

sample. Under the bootstrap approach, the 

original sample is considered as a population 

and we generate many other samples (known 

as bootstrap samples) out of it. When a large 

number of bootstrap samples are created, we 

estimate sample parameters (e.g. coefficient) 

from every bootstrap sample. Consequently, 
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we will have a distribution of bootstrap 

sample estimates.  

This distribution of bootstrap sample 

estimates can be used to construct our 

confidence intervals. For example, if we want 

to construct a 95 percent interval, we take 

2.5th and 97.5th percentiles from bootstrap 

distribution. Figure 2 explains visually the 

method of bootstrapping. 

 

 
 

In order to evaluate performance of 

bootstrap confidence intervals when 

heteroscedasticity is present, it is necessary to 

carry out a simulation of a linear model. 

Simulation is necessary for two reasons. First, 

we need to know the true population 

coefficient 𝛽
1 

 and in practice we rarely know 

the true population parameter. Secondly, we 

need to evaluate performance of estimated 

confidence intervals in presence of 

heteroscedasticity. Although real data can 

have heteroscedasticity of residuals, we do not 

know the true form of residuals distribution. 

For these two reasons we need to model our 

linear model with heteroscedastic residuals. 

We select the simplest form of linear model 

with one explanatory variable that is 

correlated with the error term.  

 

Y = 𝛃0+ 𝛃1 * 𝑋1+ 𝑋12
 * Ɛ 

where 

𝑋1 ~ 𝑁(5, 4) 

Ɛ ~ 𝑁(0, 𝑋1) 

where intercept (   𝛽0 
) and 𝛽

1  
are defined 

by us. Independent variables (X1) come from 

normal distribution with mean of 5 and 

standard deviation of 4. Error term (𝑋12
 * Ɛ) 

is simulated following the approach suggested 

by Flachaire (2003). Under this scenario, error 

term is correlated with explanatory variable 

and its variance grow as the value of 𝑋12 

grows.  

 

We check the performance of bootstrap 

confidence intervals in different sample sizes. 

Thus, we have a first sample size of 30 and 

then we increase it by 10 observations up to 

200 observations. All of the simulations are 

carried out in R software. 

 

We take the following steps for simulation 

of linear model with heteroscedasticity with 

different sample sizes 
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Step 1: set intercept 𝛃0= 4 and coefficient 

𝛃1=5 

Step 2: Set sample size to n=30 

Step 3: generate  X1 ~ N(5, 4) starting 

with sample size n 

Step 4: generate Y with   Y = 𝛃0+ 𝛃1 * 

𝑋1+ 𝑋12
 * Ɛ 

 

Step 5: estimate confidence intervals 

using traditional and bootstrap methods in 

repeated simulations (1000 times). Here we 

construction 95 percent confidence intervals 

Step 6: evaluate how many times (out of 

1000), true parameters were within estimated 

OLS and bootstrap confidence intervals 

Step 7: repeat step 2 to step 8 by adding 

10 observations to sample size (n=n+10). 

Finish when sample size reaches 200 

observations  

 

Traditional and bootstrap confidence 

intervals estimations are discussed in above 

sections. For traditional intervals, we use the 

following formula which is estimated in any 

statistical package when we construct our 

linear model. 

�̂�
1

± 𝑡𝛼
2

∗ 𝑠𝑒(�̂�1) 

Bootstrap confidence intervals are built 

taking values in certain percentiles of 
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parameter distributions that were 

generated as a result of bootstrapping.  

Results. In this part, we will look into 

two results of the simulation. One is with 

homoscedastic residuals and second is with 

different size. We also take a look at how 

estimated intervals change as we change our 

sample size. 

Correctly specified model  

First of all, we want to see how traditional 

CLT based and bootstrap confidence intervals 

perform when no violations of OLS 

assumptions are present. We expect that both 

approaches will do relatively good work in 

building interval estimates. In other words, for 

95 percent confidence intervals, we expect 

true parameters to fall within estimated 

intervals at least 95 per cent of cases.    

The first graph below shows often true 

coefficients fall within estimated confidence 

intervals built using traditional and bootstrap 

methods. One can see that both methods are 

doing relatively well, that is constructed 

intervals are containing true coefficient at 

least The chart clearly shows that both 

traditional and bootstrap confidence intervals 

contain true parameter in 90-100 percent of 

the cases which is expected outcomes. 

Bootstrap confidence intervals contain 

true coefficients more often compared to 

traditional OLS intervals. This is explained in 

the second graph, which shows that bootstrap 

intervals are larger in width compared to OLS 

intervals across all sample sizes (see Figure 4) 

Conclusion. In this paper, we carried out 

a simulation study of building bootstrap 

confidence intervals in linear models when 

variance of residuals is constant. We first 

looked at existing literature on this topic and 

then looked at the theoretical side of linear 

models with heteroscedasticity. We explained 

that traditional confidence intervals might be 

biased when heteroscedasticity is present in 

data and therefore suggested using 

bootstrapping pairs for building confidence 

intervals, which do not have any assumptions 

of residual distribution. Our simulation study 

shows that bootstrap confidence intervals 

outperform traditional ones though they are 

still not reaching targeted 95 percent coverage 

rate. In contrast, traditional intervals are 

highly inaccurate as they contain true 

coefficients in less than 80 per cent of the 

cases compared to targeted 95 per cent.
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